tony detroit
Active Member
Sulfur reactors are able to remove nitrate in both salt and freshwater tanks.
by J. Charles Delbeek, M.Sc.
Q. Do you know anything about nitrate reduction with the help of elemental sulfur? In Germany, there is a special filter promoted using small sulfur drops as a filter bed.
Rudolf Hester
A. The device you mention is known as a sulfur reactor and uses a process called autotrophic sulfur denitrification. Sulfur-based denitrification in freshwater is based upon autotrophic denitrification by sulfur-oxidizing bacteria, such as Thiobacillus denitrificans and Thiomicrospira denitrificans. Under aerobic conditions, these bacteria use oxygen as an electron acceptor, but under anoxic conditions, they oxidize various forms of reduced sulfur to sulfate, while reducing nitrate to liberate the oxygen for their own use. In addition to nitrate, T. denitrificans can also use nitrite. Autotrophic denitrifiers utilize inorganic carbon compounds (e.g., carbon dioxide, bicarbonate) as their carbon source. The process in seawater is not fully understood yet, but it does seem to work with the same result: the total removal of nitrate.
Professor Guy Martin, a specialist in water treatment at the Engineer National School of Chemistry in Rennes, France, is credited with originating the idea of using elemental sulfur and autotrophic bacteria to eliminate nitrate, but he only applied it to fresh water treatment for drinking water. Beginning in 1991, Marc Langouet, a past student of Dr. Martin, tested the method with seawater on his home reef aquariums - a risk given that no one knew if it would have toxic effects. By the end of 1994, after three years of experiments without apparent toxicity in numerous aquariums, Langouet proposed this method to Michel Hignette, curator of the Musée des Arts Africains et Océaniens (MAAO) Aquarium in
[hr]
. There, a pilot project was launched under his care. Since then, experiments have been done on a much bigger scale at the MAAO, as well as at the Grand Aquarium in Saint-Malo, where Langouet was technical and scientific director from June 1996 to December 1997.
by J. Charles Delbeek, M.Sc.
Q. Do you know anything about nitrate reduction with the help of elemental sulfur? In Germany, there is a special filter promoted using small sulfur drops as a filter bed.
Rudolf Hester
A. The device you mention is known as a sulfur reactor and uses a process called autotrophic sulfur denitrification. Sulfur-based denitrification in freshwater is based upon autotrophic denitrification by sulfur-oxidizing bacteria, such as Thiobacillus denitrificans and Thiomicrospira denitrificans. Under aerobic conditions, these bacteria use oxygen as an electron acceptor, but under anoxic conditions, they oxidize various forms of reduced sulfur to sulfate, while reducing nitrate to liberate the oxygen for their own use. In addition to nitrate, T. denitrificans can also use nitrite. Autotrophic denitrifiers utilize inorganic carbon compounds (e.g., carbon dioxide, bicarbonate) as their carbon source. The process in seawater is not fully understood yet, but it does seem to work with the same result: the total removal of nitrate.
Professor Guy Martin, a specialist in water treatment at the Engineer National School of Chemistry in Rennes, France, is credited with originating the idea of using elemental sulfur and autotrophic bacteria to eliminate nitrate, but he only applied it to fresh water treatment for drinking water. Beginning in 1991, Marc Langouet, a past student of Dr. Martin, tested the method with seawater on his home reef aquariums - a risk given that no one knew if it would have toxic effects. By the end of 1994, after three years of experiments without apparent toxicity in numerous aquariums, Langouet proposed this method to Michel Hignette, curator of the Musée des Arts Africains et Océaniens (MAAO) Aquarium in
[hr]
. There, a pilot project was launched under his care. Since then, experiments have been done on a much bigger scale at the MAAO, as well as at the Grand Aquarium in Saint-Malo, where Langouet was technical and scientific director from June 1996 to December 1997.