Originally Posted by clown123
it doesnt hurt the fish at all
I believe this to be a very irresponsible statement. The ammonia levels alone can be very lethal. Read the following and perhpas you will understand why ammonia can be so deadly, since it is the first thing to happen during a cycle.
Ammonia is extremely toxic and even relatively low levels pose a threat to fish health. Ammonia is produced by fish and all other animals, including ourselves, as part of normal metabolism. Such is the toxicity, that most animals immediately convert it to a less harmful substance, usually urea, and excrete it in urine.
Fish shortcut this process and continually excrete metabolic ammonia directly into the surrounding water via special cells in the gills. In a natural environment, such as seas, lakes and rivers, it would be immediately diluted to harmless levels. However, in the confines of aquaria, levels can rapidly rise to dangerous levels unless it is constantly removed, usually by biological filtration. Additional amounts are produced from decomposing fish food, fish waste and detritus.
The effects on fish health
Raised levels affect fish health in several different ways. At low levels (<0.1 mg/litre NH3) it acts a strong irritant, especially to the gills. Prolonged exposure to sub-lethal levels can lead to skin and gill hyperplasia . Gill hyperplasia is a condition in which the secondary gill lamellae swell and thicken, restricting the water flow over the gill filaments. This can result in respiratory problems and stress and as well as creating conditions for opportunistic bacteria and parasites to proliferate. Elevated levels are a common precursor to bacterial gill disease.
Fish response to sub lethal levels are similar to those to any other form of irritation, i.e. flashing and rubbing against solid objects. Without water testing it would be very easy to wrongly conclude the fish had a parasite problem.
At higher levels (>0.1 mg/litre NH3) even relatively short exposures can lead to skin, eye, and gills damage. Elevated levels can also lead to ammonia poisoning by suppressing normal ammonia excrement from the gills. If fish are unable to excrete this metabolic waste product there is a rise in blood-ammonia levels resulting in damage to internal organs.;
The fish response to toxic levels would be lethargy, loss of appetite, laying on the tank bottom with clamped fins, or gasping at the water surface if the gills have been affected. Because this response is similar to the response to poor water quality, parasite infestations and other diseases, it is important that a proper investigation is made to establish the real cause before administering any treatments that may exacerbate the problem.
Thomas712