florida joe
Well-Known Member
A must read from the web
Some myths die hard, especially when they get spread all over the internet these days. The idea that giant clams (tridacnids) have to be fed plankton to prevent starvation is one such myth, and I've been telling hobbyists this for about six years now. In fact, I devoted an entire chapter to tridacnid nutrition in my book Giant Clams in the Sea and the Aquarium, have made countless online posts, and have spoken on the subject at many conferences and club meetings, etc. But, the myth still lingers. I'm quite tired of talking about it though, so I'm going to address tridacnid nutrition one last time. Please read on, and help spread the word to those that haven't heard.
Tridacnids are no different than any other life forms in that they need a wide variety of nutrients to stay alive, grow, and reproduce. Of these, carbon, nitrogen, and phosphorus are needed in relatively large quantities though, and are thus known as macronutrients. These are the three that I'll focus on, and it can be assumed that if an animal is getting enough of these in its diet from some source, then it's likely getting the micronutrients it needs, too. After all, beef, lettuce, peanuts, etc. aren't made of just carbon, nitrogen, and phosphorus and neither is plankton. In addition to these, tridacnids need a source of energy, which comes primarily in the form of the simple sugar glucose.
We also need carbon, nitrogen, and phosphorus, etc. and a source of energy, but we really have only one way of acquiring them. We eat food or drink lots of protein shakes, smoothies, and sodas. On the other hand, tridacnids actually have four ways of acquiring nutrients, one of which is the hosting of zooxanthellae.
All species of tridacnids house large populations of these single-celled algae, which happen to be the same sorts that reef-building corals contain.
And as is the case with many corals, when provided with sufficiently intense lighting the zooxanthellae can provide their clam host with glucose (C6H12O6), which is an excellent source of both carbon and energy. In fact, under optimal conditions, the zooxanthellae can make far, far more sugar than they need for themselves and give away the rest.
Some myths die hard, especially when they get spread all over the internet these days. The idea that giant clams (tridacnids) have to be fed plankton to prevent starvation is one such myth, and I've been telling hobbyists this for about six years now. In fact, I devoted an entire chapter to tridacnid nutrition in my book Giant Clams in the Sea and the Aquarium, have made countless online posts, and have spoken on the subject at many conferences and club meetings, etc. But, the myth still lingers. I'm quite tired of talking about it though, so I'm going to address tridacnid nutrition one last time. Please read on, and help spread the word to those that haven't heard.
Tridacnids are no different than any other life forms in that they need a wide variety of nutrients to stay alive, grow, and reproduce. Of these, carbon, nitrogen, and phosphorus are needed in relatively large quantities though, and are thus known as macronutrients. These are the three that I'll focus on, and it can be assumed that if an animal is getting enough of these in its diet from some source, then it's likely getting the micronutrients it needs, too. After all, beef, lettuce, peanuts, etc. aren't made of just carbon, nitrogen, and phosphorus and neither is plankton. In addition to these, tridacnids need a source of energy, which comes primarily in the form of the simple sugar glucose.
We also need carbon, nitrogen, and phosphorus, etc. and a source of energy, but we really have only one way of acquiring them. We eat food or drink lots of protein shakes, smoothies, and sodas. On the other hand, tridacnids actually have four ways of acquiring nutrients, one of which is the hosting of zooxanthellae.
All species of tridacnids house large populations of these single-celled algae, which happen to be the same sorts that reef-building corals contain.
And as is the case with many corals, when provided with sufficiently intense lighting the zooxanthellae can provide their clam host with glucose (C6H12O6), which is an excellent source of both carbon and energy. In fact, under optimal conditions, the zooxanthellae can make far, far more sugar than they need for themselves and give away the rest.