Bleaching, or the paling of zooxanthellate invertebrates, occurs when (i) the densities of zooxanthellae decline and / or (ii) the concentration of photosynthetic pigments within the zooxanthellae fall (Kleppel et al. 1989). Most reef-building corals normally contain around 1-5 x 106 zooxanthellae cm-2 of live surface tissue and 2-10 pg of chlorophyll a per zooxanthella. When corals bleach they commonly lose 60-90% of their zooxanthellae and each zooxanthella may lose 50-80% of its photosynthetic pigments (Glynn 1996). The pale appearance of bleached scleractinian corals and hydrocorals is due to the cnidarian’s calcareous skeleton showing through the translucent tissues (that are nearly devoid of pigmented zooxanthellae).
Temperature
Coral species live within a relatively narrow temperature margin, and anomalously low and high sea temperatures can induce coral bleaching. Bleaching events occur during sudden temperature drops accompanying intense upwelling episodes, (-3 degrees C to –5 degrees C for 5-10 days), seasonal cold-air outbreaks. Bleaching is much more frequently reported from elevated se water temperature. A small positive anomaly of 1-2 degrees C for 5-10 weeks during the summer season will usually induce bleaching.
Solar Irradiance
Bleaching during the summer months, during seasonal temperature and irradiance maxima often occurs disproportionately in shallow-living corals and on the exposed summits of colonies. Solar radiation has been suspected to play a role in coral bleaching. Both photosyntheticaly active radiation (PAR, 400-700nm) and ultraviolet radiation (UVR, 280-400nm) have been implicated in bleaching.
Inorganic Nutrients
Rather than causing coral reef bleaching, an increase in ambient elemental nutrient concentrations (e.g. ammonia and nitrate) actually increases zooxanthellae densities 2-3 times. Although eutrophication is not directly involved in zooxanthellae loss, it could cause secondary adverse affects such as lowering of coral resistance and greater susceptibility to diseases.
Xenobiotics
Zooxanthellae loss occurs during exposure of coral to elevated concentrations of various chemical contaminants, such as Cu, herbicides and oil. Because high concentrations of xenobiotics are required to induce zooxanthellae loss, bleaching from such sources is usually extremely localized and / or transitory .
Epizootics
Pathogen induced bleaching is different from other sorts of bleaching. Most coral diseases cause patchy or whole colony death and sloughing of soft tissues, resulting in a white skeleton (not to be confused with bleached corals). A few pathogens have been identified the cause translucent white tissues, a protozoan