Corrections for Zone 1
Zone 1 is the easiest problem to correct. Unfortunately, it is also very uncommon. In this case, both calcium and alkalinity are on the high side of normal. Moreover, if you leave the tank alone, the problem will likely correct itself, and you will end up in the red target zone (though you may also pass through it into zone 2 if you wait too long).
Figure 2. A graph showing how to correct values within zone 1 by allowing calcium carbonate to be deposited in the tank (the blue arrow).
What this zone implies is that both calcium and alkalinity are elevated, and that by removing calcium carbonate from the water, either through biotic deposition into coral skeletons or coralline algae, or through abiotic precipitation, as on heaters, the levels of each will drop in an appropriate ratio. More specifically, the tank parameters will move along a line parallel to the two lines bordering this zone, and directly into the red target zone (the blue arrow in Figure 2). If you are smack in the middle between these two lines, as in Figure 2, then you will continue to move in the middle of these two lines down into the target zone.
This movement can continue right out the bottom end of the target zone (into zone 2), of course, so once you reach the target zone, you’ll have to reinitiate normal calcium and alkalinity additions.
Proud sponsor of this column
Corrections for Zone 2
Zone 2 is also an easy problem to correct, and is very common. In this case, both calcium and alkalinity are on the low side of normal. If you take any tank in the red target zone, and let corals and coralline algae grow (i.e., calcify), then you will move into zone 2. Just as above (Figure 2), you will move downward in a fashion such that you parallel the lines bordering the zone. That fact is why it is so common to have this problem: anyone not adding enough calcium and alkalinity to balance demand in the tank will likely enter this zone.
To correct this situation back to the red target zone, one wants to add calcium and alkalinity in a balanced fashion. Fortunately, there are many ways to achieve this balance, such as with limewater (kalkwasser), calcium carbonate/carbon dioxide reactors, and the many balanced two-part calcium and alkalinity supplements (such as B-ionic, C-Balance, etc.). The more that you add of these, the further upward your correction will go (the blue arrow in Figure 3). Of course, adding too much will push you into zone 1, but if that happens you can just sit back and watch it drop back to the target zone. I’ll discuss balanced additives more at the end of the article.
Figure 3. A graph showing how to correct values within zone 2 by supplementing with a balanced calcium and alkalinity additive system (the blue arrow).
Of course, you can add calcium and alkalinity that are not “balanced” (that is, not tied to one another in any specific ratio). For example, adding calcium chloride and sodium bicarbonate will work fine, but you must fine-tune exactly how much of each you add. Consequently, more careful monitoring of calcium and alkalinity levels is necessary if you go this route.
Click to Visit
Proud sponsor of this column
Remember that manufacturer recommendations are based on maintaining a tank, not in making substantial corrections. To make such corrections, you may need to add much more than is recommended. If you are adding a balanced additive (and the pH is not getting out of the range of about 7.9 to 8.5) then the worst that is likely to happen from overdosing (other than truly huge overdosing) is wasting some money and causing some extra precipitation of calcium carbonate on your heater and other parts of the tank. These balanced additives are discussed in more detail at the end of the article.
On the other hand, if you are using independent calcium and alkalinity additives, you must be very careful to not create an imbalance by adding too much of one relative to the other. Directions for deciding how much of these types of additives can be found below, but you should rely on frequent testing more than recommended amounts, to determine how much of these types of additives to put into the tank.
Finally, if you are adding large amount of calcium and alkalinity supplements, but just cannot maintain the desired values, you might want to measure the magnesium level in the water. Magnesium plays an important role in preventing the abiotic precipitation of calcium carbonate1, and if it is substantially depleted, you may be experiencing excessive amounts of calcium and alkalinity loss to this route. Magnesium gets the blame far more frequently, in my opinion, than it is likely responsible, but since it is easy to check with a test kit and easy to supplement if necessary, there’s no reason to not see if it is a problem. I’d advise aiming for a natural seawater level of about 1300 ppm.