The important question here, though, is whether magnetic water treatment works. In an effort to find the answer, I conducted a search for relevant scientific and engineering journal articles. I describe the results of this search below.
More than one hundred relevant articles and reports are available in the open literature, so clearly magnetic water treatment has received some attention from the scientific community (e.g., see reference list in Duffy 1977). The reported effects of magnetic water treatment, however, are varied and often contradictory. In many cases, researchers report finding no significant magnetic treatment effect. In other cases, however, reasonable evidence for an effect is provided.
Liburkin et al. (1986) found that magnetic treatment affected the structure of gypsum (calcium sulfate). Gypsum particles formed in magnetically treated water were found to be larger and "more regularly oriented" than those formed in ordinary water. Similarly, Kronenberg (1985) reported that magnetic treatment changed the mode of calcium carbonate precipitation such that circular disc-shaped particles are formed rather than the dendritic (branching or tree-like) particles observed in nontreated water. Others (e.g., Chechel and Annenkova 1972; Martynova et al. 1967) also have found that magnetic treatment affects the structure of subsequently precipitated solids. Because scale formation involves precipitation and crystallization, these studies imply that magnetic water treatment is likely to have an effect on the formation of scale.
Some researchers hypothesize that magnetic treatment affects the nature of hydrogen bonds between water molecules. They report changes in water properties such as light absorbance, surface tension, and pH (e.g., Joshi and Kamat 1966; Bruns et al. 1966; Klassen 1981). However, these effects have not always been found by later investigators (Mirumyants et al. 1972). Further, the characteristic relaxation time of hydrogen bonds between water molecules is estimated to be much too fast and the applied magnetic field strengths much too small for any such lasting effects, so it is unlikely that magnetic water treatment affects water molecules (Lipus et al. 1994).
Duffy (1977) provides experimental evidence that scale suppression in magnetic water treatment devices is due not to magnetic effects on the fluid, but to the dissolution of small amounts of iron from the magnet or surrounding pipe into the fluid. Iron ions can suppress the rate of scale formation and encourage the growth of a softer scale deposit. Busch et al. (1986) measured the voltages produced by fluids flowing through a commercial magnetic treatment device. Their data support the hypothesis that a chemical reaction driven by the induced electrical currents may be responsible for generating the iron ions shown by Duffy to affect scale formation.
Among those who report some type of direct magnetic-water-treatment effect, a consensus seems to be emerging that the effect results from the interaction of the applied magnetic field with surface charges of suspended particles (Donaldson 1988; Lipus et al. 1994). Krylov et al. (1985) found that the electrical charges on calcium carbonate particles are significantly affected by the application of a magnetic field. Further, the magnitude of the change in particle charge increased as the strength of the applied magnetic field increased.
Gehr et al. (1995) found that magnetic treatment affects the quantity of suspended and dissolved calcium sulfate. A very strong magnetic field (47,500 gauss) generated by a nuclear magnetic resonance spectrometer was used to test identical calcium sulfate suspensions with very high hardness (1,700 ppm on a CaCO3 basis). Two minutes of magnetic treatment decreased the dissolved calcium concentration by about 10 percent. The magnetic field also decreased the average particle charge by about 23 percent. These results, along with those of many others (e.g., Parsons et al. 1997; Higashitani and Oshitani 1997), imply that application of a magnetic field can affect the dissolution and crystallization of at least some compounds.